| 设为首页 | Sign in China | 标识网微信二维码 |
更多
发布信息
发布信息
会员中心
会员中心
 
 
当前位置: 标识网首页 » 行业资讯 » 资讯要闻 » 正文

LED芯片倒装工艺原理以及发展趋势

放大字体  缩小字体 发布日期:2016-01-18  来源:鹰目网  作者:中国标识网  浏览次数:862
  2)LED芯片的寿命和可靠性
 
  芯片的结温和散热
 
  散热问题是功率型白光led需重点解决的技术难题,散热效果的优劣直接关系到路灯的寿命和节能效果。led是靠电子在能带间跃迁产生光的,其光谱中不含有红外部分,所以LED的热量不能靠辐射散发。如果led芯片中的热量不能及时散发出去,会加速器件的老化。一旦LED的温度超过最高临界温度(跟据不同外延及工艺,芯片温度大概为150℃),往往会造成LED永久性失效。有效地解决led芯片的散热问题,对提高led路灯的可靠性和寿命具有重要作用。要做到这一点,最直接的方法莫过于提供一条良好的导热通道让热量从结往外散出。在芯片的级别上,与传统正装结构以蓝宝石衬底作为散热通道相比,垂直及倒装焊芯片结构有着较佳的散热能力。垂直结构芯片直接采用铜合金作为衬底,有效地提高了芯片的散热能力。倒装焊(Flip-Chip)技术通过共晶焊将LED芯片倒装到具有更高导热率的硅衬底上(导热系数约120W/mK,传统正装芯片蓝宝石导热系数约20W/mK),芯片与衬底间的金凸点和硅衬底同时提高了LED芯片的散热能力,保障LED的热量能够快速从芯片中导出。
 
  芯片的ESD保护
 
  另外,抗静电释放(ESD)能力是影响LED芯片可靠性的另一因素。蓝宝石衬底的蓝色芯片其正负电极均位于芯片上面,间距很小;对于InGaN/AlGaN/GaN双异质结,InGaN活化簿层厚度仅几十纳米,对静电的承受能力有限,很容易被静电击穿,使器件失效。为了防止静电对LED芯片的损害,一方面可以采用将生产设备接地和隔离人体静电等生产管理方法,另一方面可以在LED芯片中加入齐纳保护电路。在应用到路灯领域中,传统芯片结构ESDHBM最高约为2000V,通常需要在封装过程中通过金线并联一颗齐纳芯片以提高ESD防护能力,不仅增加封装成本和工艺难度,可靠性也有较大的风险。通过在硅衬底内部集成齐纳保护电路的方法,可以大大提高LED芯片的抗静电释放能力(ESDHBM=4000~8000V),同时节约封装成本,简化封装工艺,并提高产品可靠性。
 
  3)实例介绍倒装芯片的稳定性
 
  led路灯通常为60-200W左右,目前主要采取两种方式来实现,一种是通过“多颗芯片金线串并联的模组”和“多颗LED通过PCB串并联”的方式来实现高瓦数。无论哪种实现方式,均要求在封装过程中通过焊线(Wire-bonding)的方式实现芯片与支架的电路连接,而焊接过程中瓷嘴对LED的芯片的冲击是导致LED漏电、虚焊等主要原因,传统正装和垂直结构LED,电极位于芯片的发光表面,因此焊线过程中瓷嘴的正面冲击极易造成发光区和电极金属层等的损伤,在LED芯片采取倒装结构中,电极位于硅基板上,焊线过程中不对芯片进行冲击,极大地提高封装可靠性和生产良率。
 
  LED芯片的封装要求
 
  作为LED路灯的核心器件,LED芯片的性能需要通过led封装工艺来实现光效、寿命、稳定性、光学设计、散热等能力的提升。由于芯片结构的不同,对应的封装工艺也有较大的差异。
 
  光效提升
 
  正装结构和垂直结构的芯片是GaN与荧光粉和硅胶接触,而倒装结构中是蓝宝石(sapphire)与荧光粉和硅胶接触。GaN的折射率约为2.4,蓝宝石折射率为1.8,荧光粉折射率为1.7,硅胶折射率通常为1.4-1.5。蓝宝石/(硅胶+荧光粉)和GaN/(硅胶+荧光粉)的全反射临界角分别为51.1-70.8°和36.7-45.1°,在封装结构中由蓝宝石表面射出的光经由硅胶和荧光粉界面层的全反射临界角更大,光线全反射损失大大降低。同时,芯片结构的设计不同,导致电流密度和电压的不同,对LED的光效有明显的影响。如传统的正装芯片通常电压在3.5V以上,而倒装结构芯片,由于电极结构的设计,电流分布更均匀,使LED芯片的电压大幅度降低至2.8V-3.0V,因此,在同样光通量的情况,倒装芯片的光效比正装芯片光效约高16-25%左右。
 

 
[ 行业资讯搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 

 
推荐行业资讯
点击排行


 
 
© 2013 标识网 版权所有 京ICP备13011159号-5

京公网安备 11010602004079号